Different processing of meningeal and cutaneous pain information in the spinal trigeminal nucleus caudalis

Author:

Melin Céline12,Jacquot Florian1,Vitello Nicolas1,Dallel Radhouane12,Artola Alain1

Affiliation:

1. Clermont University, University of Auvergne, Clermont-Ferrand, France

2. Clermont-Ferrand University Hospital, Department of Odontology, Clermont-Ferrand, France

Abstract

Introduction Within superficial trigeminal nucleus caudalis (Sp5C) (laminae I/II), meningeal primary afferents project exclusively to lamina I, whereas nociceptive cutaneous ones distribute in both lamina I and outer lamina II. Whether such a relative absence of meningeal inputs to lamina II represents a fundamental difference from cutaneous pathways in the central processing of sensory information is still unknown. Methods We recorded extracellular field potentials in the superficial Sp5C of anesthetised rats evoked by electrically stimulating the dura mater, to selectively assess the synaptic transmission between meningeal primary afferents and second-order Sp5C neurons, the first synapse in trigeminovascular pathways. We tested the effect of systemic morphine and local glycinergic and GABAAergic disinhibition. Results Meningeal stimulation evokes two negative field potentials in superficial Sp5C. The conduction velocities of the activated primary afferents are within the Aδ- and C-fibre ranges. Systemic morphine specifically suppresses meningeal C-fibre-evoked field potentials, and this effect is reversed by systemic naloxone. Segmental glycinergic or GABAAergic disinhibition strongly potentiates meningeal C-fibre-evoked field potentials but not Aδ-fibre ones. Interestingly, the same segmental disinhibition conversely potentiates cutaneous Aδ-fibre-evoked field potentials and suppresses C-fibre ones. Conclusion These findings reveal that the different anatomical organization of meningeal and cutaneous inputs into superficial Sp5C is associated with a different central processing of meningeal and cutaneous pain information within Sp5C. Moreover, they suggest that the potentiation upon local disinhibition of the first synapse in trigeminovascular pathways may contribute to the generation of headache pain.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3