Cannabinoids induce latent sensitization in a preclinical model of medication overuse headache

Author:

Kopruszinski Caroline M1,Navratilova Edita1,Vagnerova Barbora1,Swiokla Juliana1,Patwardhan Amol1,Dodick David2,Porreca Frank12

Affiliation:

1. Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA

2. Department of Neurology, Mayo Clinic, Phoenix, AZ, USA

Abstract

Aim Evaluation of cannabinoid receptor agonists in a preclinical model of medication overuse headache. Methods Female Sprague Dawley rats received graded intraperitoneal doses of WIN55,212-2 or Δ-9-tetrahydrocannabinol (Δ-9-THC). Antinociception (tail-flick test), catalepsy and hypomotility (open field test) and impairment of motor function (rotarod test) were assessed to establish effective dosing. Rats were then treated twice daily with equianalgesic doses of WIN55,212-2 or Δ-9-THC, or vehicle, for 7 days and cutaneous tactile sensory thresholds were evaluated during and three weeks following drug discontinuation. Rats then received a one-hour period of bright light stress (BLS) on two consecutive days and tactile sensory thresholds were re-assessed. Results WIN55,212-2 and Δ-9-THC produced antinociception as well as hypomotility, catalepsy and motor impairment. Repeated administration of WIN55,212-2 and Δ-9-THC induced generalized periorbital and hindpaw allodynia that resolved within 3 weeks after discontinuation of drug. Two episodes of BLS produced delayed and long-lasting periorbital and hindpaw allodynia selectively in rats previously treated with WIN55,212-2, and Δ-9-THC. Interpretation Cannabinoid receptor agonists including Δ-9-THC produce a state of latent sensitization characterized by increased sensitivity to stress, a presumed migraine trigger. Overuse of cannabinoids including cannabis may increase the risk of medication overuse headache in vulnerable individuals.

Funder

Foundation for Pharmaceutical education, Training, and Research

Publisher

SAGE Publications

Subject

Clinical Neurology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3