Cranial dural permeability of inflammatory nociceptive mediators: Potential implications for animal models of migraine

Author:

Zhao Jun12,Bree Dara12,Harrington Michael G3,Strassman Andrew M12,Levy Dan12

Affiliation:

1. Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA

2. Harvard Medical School, Boston, MA, USA

3. Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA, USA

Abstract

Background Application of inflammatory mediators to the cranial dura has been used as a method to activate and sensitize neurons in the meningeal sensory pathway in preclinical behavioral studies of headache mechanisms. However, the relatively high concentrations and volumes used in these studies raise the question of whether the applied agents might pass through the dura to act directly on central neurons, thus bypassing the dural afferent pathway. Methods We used a radiolabeling approach to quantify the meningeal permeability of two of the inflammatory mediators, 5-HT and PGE2, when applied to the cranial dura as part of an inflammatory mixture used in preclinical headache models. Results Both agents could be detected in samples taken four hours after dural application in the cerebrospinal fluid (CSF) and, in measurements made only for PGE2, in the central nervous system (CNS) as well. Based on our measurements, we made estimates of the CSF and CNS levels that would be attained with the higher concentrations and volumes of 5HT and PGE2 that were exogenously applied in previous pre-clinical headache studies. These estimated levels were comparable to or larger than normal endogenous levels, potentially large enough to have physiological effects. Conclusions The finding that the cranial meninges are permeable to the two tested inflammatory mediators PGE2 and 5-HT raises some uncertainty about whether the behavioral changes observed in prior pre-clinical headache studies with these as well as other agents can be attributed entirely to the activation of dural nociceptors, particularly when the agents are applied at concentrations several orders of magnitude above physiological levels.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3