The pathophysiology of episodic cluster headache: Insights from recent neuroimaging research

Author:

Yang Fu-Chi1,Chou Kun-Hsien23,Kuo Chen-Yuan4,Lin Yung-Yang2567,Lin Ching-Po2345,Wang Shuu-Jiun2567

Affiliation:

1. Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taiwan

2. Brain Research Center, National Yang-Ming University, Taiwan

3. Institute of Neuroscience, National Yang-Ming University, Taiwan

4. Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taiwan

5. Institute of Brain Science, National Yang-Ming University, Taiwan

6. Faculty of Medicine, National Yang-Ming University School of Medicine, Taiwan

7. Neurological Institute, Taipei Veterans General Hospital, Taiwan

Abstract

Background Cluster headache is a disorder characterized by intermittent, severe unilateral head pain accompanied by cranial autonomic symptoms. Most cases of CH are episodic, manifesting as “in-bout” periods of frequent headache separated by month-to-year-long “out-of-bout” periods of remission. Previous imaging studies have implicated the hypothalamus and pain matrix in the pathogenesis of episodic CH. However, the pathophysiology driving the transition between in- and out-of-bout periods remains unclear. Methods The present study provides a narrative review of previous neuroimaging studies on the pathophysiology of episodic CH, addressing alterations in brain structures, metabolism, and structural and functional connectivity occurring between bout periods. Results Although the precise brain structures responsible for episodic CH are unknown, major roles are indicated for the posterior hypothalamus (especially in acute attacks), the pain neuromatrix with an emphasis on central descending pain modulation, and non-traditional pain processing networks including the occipital, cerebellar, and salience networks. These areas are potentially related to dynamic transitioning between in- and out-of-bout periods. Conclusion Recent progress in magnetic resonance imaging of episodic CH has provided additional insights into dynamic bout-associated structural and functional connectivity changes in the brain, especially in non-traditional pain processing network areas. These areas warrant future investigations as targets for neuromodulation in patients with CH.

Funder

Academia Sinica

Publisher

SAGE Publications

Subject

Neurology (clinical),General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3