Non-vascular ATP-sensitive potassium channel activation does not trigger migraine attacks: A randomized clinical trial

Author:

Kokoti Lili12ORCID,Al-Karagholi Mohammad Al-Mahdi12ORCID,Zhuang Zixuan Alice12,Amirguliyev Sarkhan1,Amin Faisal Mohammad12,Ashina Messoud123

Affiliation:

1. Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

2. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

3. Danish Headache Knowledge Center, Rigshospitalet – Glostrup, Glostrup, Denmark

Abstract

Objective To investigate the role of NN414, a selective KATP channel opener for the Kir6.2/SUR1 channel subtype found in neurons and β-pancreatic cells, in inducing migraine attacks in individuals with migraine without aura. Methods Thirteen participants were randomly allocated to receive NN414 and placebo on two days separated by at least one week. The primary endpoint was the difference in the incidence of migraine attacks after NN414 compared with placebo. The secondary endpoints were the difference in the area under the curve for headache intensity scores, middle cerebral artery blood flow velocity (VMCA), superficial temporal artery diameter, heart rate and mean arterial pressure. Results Twelve participants completed the study, with two (16.6%) reporting migraine attacks after NN414 compared to one (8.3%) after placebo (p = 0.53). The area under the curve for headache intensity, VMCA, superficial temporal artery diameter, heart rate and mean arterial pressure did not differ between NN414 and placebo (p > 0.05, all comparisons). Conclusion The lack of migraine induction upon activation of the Kir6.2/SUR1 channel subtype suggests it may not contribute to migraine pathogenesis. Our findings point to KATP channel blockers that target the Kir6.1/SUR2B subtype, found in cerebral vasculature, as potential candidates for innovative antimigraine treatments. Registration number: NCT04744129

Funder

Lundbeck Foundation

Research Fund of Rigshospitalet

Lundbeck Foundation Professor Grant

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3