Development of gates to measure the immature platelet fraction in C57BL/6J mice using the Sysmex XN-V series multispecies hematology analyzer

Author:

Davenport Patricia1ORCID,Lorenz Viola1,Liu Zhi-Jian1,Feldman Henry A.2ORCID,Canas Jorge1,Nolton Emily1,Badur Chiara-Aiyleen1,Do Thi Minh-Thi1,Sola-Visner Martha1

Affiliation:

1. Division of Newborn Medicine

2. Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA, USA

Abstract

The immature platelet fraction (IPF) is a measure of newly released platelets, which has been used as a marker of platelet production in multiple human studies but is not widely available in multispecies analyzers. We developed gates to measure the IPF in diluted and undiluted murine blood samples on the Sysmex XN-1000V multispecies hematology analyzer. IPF gates were created using undiluted and diluted (1/10) blood samples obtained from adult and newborn (postnatal day 10, P10) C57BL/6J wild-type (WT) mice, and from 3 murine models of thrombocytopenia: c-MPL−/− mice, which lack the thrombopoietin receptor (hyporegenerative); antibody-mediated thrombocytopenia; and acute inflammation-induced thrombocytopenia. P10 mice were chosen because, at their size, we could consistently obtain (by terminal phlebotomy) the blood volume needed to run an undiluted sample. The undiluted blood IPF gate successfully differentiated between mechanisms of thrombocytopenia in both adult and P10 mice. For diluted samples, 2 IPF gates were generated: a thrombocytopenic (T) gate, which performed well in samples with platelet counts (PCs) <800 × 109/L in adult mice and <500 × 109/L in newborn mice, and a non-thrombocytopenic (NT) gate, which performed well in samples with PCs above these thresholds. PCs and IPFs measured in diluted blood using these gates agreed well with those measured in undiluted blood and had good reproducibility. These diluted gates allow for the accurate measurement of PCs and IPFs in small (10 µL) blood volumes, which can be obtained easily from adult and newborn mice as small as P1 to assess platelet production serially.

Funder

Sysmex America

National Heart, Lung, and Blood Institute

Publisher

SAGE Publications

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3