Disease diagnostic coding to facilitate evidence-based medicine: current and future perspectives

Author:

Derscheid Rachel J.1ORCID,Rahe Michael C.1ORCID,Burrough Eric R.1ORCID,Schwartz Kent J.1,Arruda Bailey1

Affiliation:

1. Veterinary Diagnostic Laboratory, Iowa State University College of Veterinary Medicine, Ames, IA

Abstract

Technologic advances in information management have rapidly changed laboratory testing and the practice of veterinary medicine. Timely and strategic sampling, same-day assays, and 24-h access to laboratory results allow for rapid implementation of intervention and treatment protocols. Although agent detection and monitoring systems have progressed, and wider tracking of diseases across veterinary diagnostic laboratories exists, such as by the National Animal Health Laboratory Network (NAHLN), the distinction between detection of agent and manifestation of disease is critical to improved disease management. The implementation of a consistent, intuitive, and useful disease diagnosis coding system, specific for veterinary medicine and applicable to multiple animal species within and between veterinary diagnostic laboratories, is the first phase of disease data aggregation. Feedback loops for continuous improvement that could aggregate existing clinical and laboratory databases to improve the value and applications of diagnostic processes and clinical interventions, with interactive capabilities between clinicians and diagnosticians, and that differentiate disease causation from mere agent detection, remain incomplete. Creating an interface that allows aggregation of existing data from clinicians, including final diagnosis, interventions, or treatments applied, and measures of outcomes, is the second phase. Prototypes for stakeholder cooperation, collaboration, and beta testing of this vision are in development and becoming a reality. We focus here on how such a system is being developed and utilized at the Iowa State University Veterinary Diagnostic Laboratory to facilitate evidence-based medicine and utilize diagnostic coding for continuous improvement of animal health and welfare.

Publisher

SAGE Publications

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3