Affiliation:
1. School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin, China
2. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin, China
Abstract
The coupled vibration in the turbine disk-blade system (TDS) is one of the main bottlenecks that hinder the further development of high-performance engines. To analyze the vibration of the TDS, three types of contact conditions, involving bonded, frictionless, or frictional were used to simulate the contact between the turbine disk and the blades. Three finite element analysis (FEA) models of a typical TDS based on the tenon structure were developed. The experimental system was developed and experimental modal analysis (EMA) was performed. According to the comparison between FEA and EMA results, the most accurate model is the frictional contact FEA model. The average error of the frictional contact FEA model is 1.42%, and the root mean square error is 0.75%. The working modes of the TDS at different speeds were calculated using the frictional contact FEA model. Meanwhile, based on the newly developed FEA model, it is found that the weak links in the TDS are the blades. This work can provide a theoretical basis for the TDS structure optimization and promote the development of high-quality aero-engines.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献