Wear calculation and life prediction model of disc brake based on elastoplastic contact mechanics

Author:

Sha Zhihua1,Hao Qiang1ORCID,Yin Jian1ORCID,Ma Fujian1,Liu Yu1ORCID,Zhang Shengfang1

Affiliation:

1. College of Mechanical Engineering, Dalian Jiaotong University, Dalian, China

Abstract

For the friction and wear of the braking surface of the disc brake, the mechanism of friction contact deformation of rough surface is analyzed. Considering elastoplastic contact mechanics of the friction surfaces, combined with Archard wear calculation theory, a wear calculation model of fractal rough surface is established, and a wear life prediction of the brake disc is proposed. Based on high-speed and heavy-load braking conditions, the influence of different braking parameters on the surface wear of brake disc is studied. Moreover, a pin-on-disc wear test is used to verify the validity of the wear calculation model, and the average relative error of test and simulation is 4.97%. The research results show that the fractal parameters affect the complexity of the rough surface, and surface wear is mainly caused by interface plastic contact. The friction coefficient is large, which can strengthen the surface shear effect. Large load and high speed would increase the real contact area of the surface and increase the wear volume per unit time. Furthermore, the wear life of the brake disc could be estimated, which is of great significance for raising the wear life of the brake disc, improving braking life and braking efficiency.

Funder

national natural science foundation of china

key technologies research and development program

Scientific Research Project of the Education Department of Liaoning Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3