Prediction of stamping parameters for imitation π-shaped lithium battery shells by building variable weight and threshold pelican-BP neural networks

Author:

Gao Yuanyuan1ORCID,Liu Na12,Liu Peng1,Wang Chengnuo1

Affiliation:

1. Shandong Jianzhu University, Jinan, China

2. Transportation Industry Key Laboratory of Vehicle Detection, Diagnosis, and Maintenance Technology, Jinan, China

Abstract

With the rapid development of artificial neural networks, more sophisticated network models and more accurate prediction results are provided for solving engineering applications. In this paper, the weights and thresholds of the feedforward neural network model were optimized using the pelican algorithm, and the optimal solution was output by simulating the pelican predation scheme and assigned as the new parameters of the neural network. A POA-BP network model was proposed, and its better prediction was demonstrated by comparing the fitting and prediction performance with 13 neural network models such as random forest, support vector machine, and wavelet basis by evaluating metrics such as RMSE, MSE, and MAE. To further improve the prediction accuracy, different hidden layer topologies of POA-BP were compared, and the Monte Carlo method was used to obtain seven design variables for the lithium battery shell size parameters, and parameter regression prediction was performed for the structure after the variable density topology optimization used the isotropic material interpolation model (SIMP) with the moving asymptote method by invoking the MinGW-w64 compiler, and the 1-3-1 neural network was selected model to predict each dimension of the battery shell structure, the final shell weight reduction ratio was 18.12% and the first-order intrinsic frequency was increased by 14.56%.

Funder

Department of Education of Shandong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3