Influence of transport coefficients’ dependence on temperature for gas flow in microbearing

Author:

Milićev Snežana S.1ORCID,Stevanović Nevena D.1

Affiliation:

1. Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia

Abstract

The paper presents an analytical solution for the non-isothermal compressible gas flow in a slide microbearing with different temperatures of walls. The gas flow is defined by the Navier-Stokes-Fourier system of the continuum equations and first order boundary conditions. Knudsen number corresponds to the slip and continuum flow (Kn ≤ 10−1) and Reynolds number is moderately high, so inertia needs to be included. The solution is obtained by perturbations with the first approximation that relates to the continuum flow and the second one that involves second-order effects: the rarefaction, inertia, convection, dissipation, and rate at which work is done in compressing the element of fluid. The presented model analyzes the influence of the dependence of transport coefficients on temperature. The obtained analytical solution for the pressure, velocity, and temperature is approved by a comparison with the results of other authors. The microbearings can often be a part of MEMS, so the presented method and the obtained analytical solution can serve for solving similar non-isothermal shear-driven or pressure-driven problems. The paper gives an estimation about the error in values for microbearing mass flow and load capacity if the dependence of transport coefficients on temperature are neglected.

Funder

Ministry of Education, Science and Technological Development, Republic of Serbia

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3