Affiliation:
1. School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, Hebei, China
2. Department of Mechanical and Electrical Engineering, Handan Polytechnic College, Handan, Hebei, China
Abstract
In this paper, in order to solve the problem that it is difficult to carry out accurate fault diagnosis for gearbox under noise environment, complete ensemble imperial mode decomposition with adaptive noise analysis (CEEMDAN) is used to solve the sample entropy of the original signal and each intrinsic mode function (IMF) component, adaptive wavelet is adopted to decompose and reconstruct IMF with large sample entropy for noise reduction, and first layer wide convolution kernel deep convolution neural network (WDCNN) and long short term memory (LSTM) are used to extract the basic digital features of the reconstructed signal and the correlation features between the features. Therefore, a new fault diagnosis method for gearbox under noise environment is proposed. Taking the public data set of Jiangsu Qiangpeng Diagnostic Engineering Co., Ltd as the research object, the experiments were carried out with the method proposed in this paper. The experimental results show that the proposed method has high accuracy and strong anti-noise ability. Under the environment of no noise and low noise, the fault diagnosis accuracy of the gearbox is 100%; even if the signal to noise ratio is −4 dB, the fault diagnosis accuracy of the gearbox can still reach 99.97%. Therefore, this paper provides a method support for gearbox fault diagnosis under noise environment.
Funder
Nature Science Foundation of Hebei Province
Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献