A multi-objective collaborative optimization method for excavator working devices based on knowledge engineering

Author:

Lu Zhe1ORCID,Lin Shuwen1,Chen Jianxiong1,Gu Tianqi1,Xie Yu1,Zhao Zihao1

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China

Abstract

To enhance the excavator performance considering the digging force and boom lift force under typical working conditions, this paper aims to solve the complex multiobjective optimization of the excavator by proposing a new knowledge-based method. The digging force at multiple key points is utilized to characterize the excavator’s performance during the working process. Then, a new optimization model is developed to address the imbalanced optimization quality among subobjectives obtained from the ordinary linear weighted model. The new model incorporates the loss degree relative to the optimal solution of each subobjective, aiming to achieve a more balanced optimization. Knowledge engineering is integrated into the optimization process to improve the optimization quality, utilizing a knowledge base incorporating seven different types of knowledge to store and reuse the information related to optimization. Furthermore, a knowledge-based multiobjective algorithm is proposed to perform the knowledge-guided optimization. Experimental results demonstrate that the proposed knowledge-based method outperforms existing methods, resulting in an average increase of 15.1% in subobjective values.

Funder

Major Science and Technology Projects in Fujian Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3