Analysis of the punch motion curve for the springback of U-shaped sheet metal

Author:

Chen Tsung-Chia1,Chen Shi-Xun1,Wang Cheng-Chi2ORCID,Lee Tsui-Er3

Affiliation:

1. Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung

2. Department of Intelligent Automation Engineering, National Chin-Yi University of Technology, Taichung

3. Office of Physical Education, Asia University, Taichung

Abstract

Servo presses achieve high formability by using different punch motion curves, thereby increasing their applicability in conventional processing fields. In this study, the punch motion curves of servo presses were optimized, and the effects of punch motion curves on the springback of U-shaped sheet metal were explored. Subsequently, the optimal punch motion curve was determined, and the springback effect after processing was investigated. Different punch motion curves were proposed and simulated for comparison with the results of conventional methods, and the equivalent stress values obtained using different motion curves and mold angles were analyzed. DEFORM software was used to conduct simulations to determine the differences between processing methods. In addition, the spring-go, springback, load–stroke characteristics, and stress and strain distributions of U-shaped sheet metal were investigated. The conventional motion curve resulted in springback, stress, strain, and required processing force higher than those achieved by the curves proposed in this study. The smaller the movement difference in the motion curve of the servo press was, the lower the springback, stress, and strain were. These results indicate that the punch motion curves obtained for different types of processing can serve as a reference for selecting appropriate parameter values for servo presses.

Funder

Ministry of Science and Technology, Taiwan

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of the double crank mechanism in designing complex-stroke press;Journal of Military Science and Technology;2023-12-10

2. Design Complex-Stroke Press Using Synchronous Motors;International Journal of Mechanical Engineering and Robotics Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3