Numerical simulation and experimental study on seafloor sampling of an anchor-type mud collector based on SPH-FEM coupling method

Author:

Zhang Jiaqi1ORCID,Xue Bin2,Liang Jun2,Guo Yuanming2,Li Tiejun2,Li Detang3,Xie Yonghe3,Wang Jun1,Hong Yongqiang3

Affiliation:

1. School of Marine Engineering and Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, China

2. Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishery Grounds, Ministry of Agriculture, Zhejiang Province Key Laboratory for Technology Research on Sustainable Utilization of Marine Fishery Resources, Zhoushan, Zhejiang, China

3. School of Shipping and Maritime Transport, Zhejiang Ocean University, Zhoushan, Zhejiang, China

Abstract

Marine sediments are important for research in scientific fields such as marine geology, environmental testing of waters, marine biology and seabed resource exploration. Among them, mud miner is an important way to obtain sediments. However, due to the complexity of the marine environment, the seabed sampling operation is a relatively difficult and complicated project. The structural design of the sampler, the operation mode, and the interaction between the sampler and the sediment affect the sampling effect, which leads to the low efficiency of the sampler operation. In order to investigate the main factors affecting the drag force of the sampler during seafloor sampling, this paper takes a simple and portable anchor-type mud collector surface sediment sampler as a study. This paper introduces the mechanical structure and working principle of an anchor-type mud collector, establishes a mechanical model of the mud collector seafloor sampling process and derives the main factors affecting the dragging force: internal friction angle; the horizontal angle of the bi-directional shaft rod; undercut angle [Formula: see text] of bottom cover and dragging speed. A FEM-SPH method based on the coupling of the finite element method (FEM) and the smooth particle hydrodynamics method (SPH) was proposed to simulate the dynamic process of mud collector subsea sampling, and the mechanical data of fine sand and clay were obtained through land-based experiments. Based on the comparison between experimental data and numerical simulation data, the simulation validity of the FEM-SPH method was verified. The results show that the drag force of the clay was greater than that of the fine sand in the experiment of cutting the lower cover of the mud collector into the fine sand and clay, the internal friction angle of the clay is greater than that of the fine sand; with the increase in horizontal inclination angle and the decrease in undercut angle, the dragging force gradually increased; The dragging speed ranged from 0.2 to 0.6 m/s, with an increase in the mass of clay and fine sand collected with increasing speed, resulting in a gradual increase in dragging force. This paper provides a new method to study the force of the mud collector, provides a theoretical method to reduce the intensity and difficulty of manual work in the sampling process and increase the efficiency of sampling.

Funder

national key research and development program of china

key research and development program of zhejiang province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3