Virtual battery electric vehicle development via 1D tools

Author:

Altuğ Emre1ORCID,Akyünci Ömer Faruk1,Özgül Emre1

Affiliation:

1. Ford Otosan R&D Center, Sancaktepe, Istanbul, Turkey

Abstract

Actual testing and prototyping costs make up a significant portion of engineering budgets. Virtual demonstration mainly relies on fast and accurate models with robust performance prediction capability as a cost-effective solution. In this manuscript, GT-Suite, a one-dimensional simulation tool is preferred for developing an isothermal battery model. The developed battery model is implemented to a Light Commercial Vehicle model to run Worldwide Harmonized Light Vehicles Test Cycle. The critical outputs such as state of charge, energy depletion, heat rejection, and generated power are reported. Histograms such as pack current, charge, and discharge current with respect to its nominal capacity (C-rate) are also created to examine the operation capability of battery. In the results, it is seen that the state of charge diminishes from 90% to 82%, as an expected behavior. It is also found that the Parallel Sparse Direct and Multi-Recursive Iterative Linear Solvers methodology reduces the simulation duration by approximately 100 times, in comparison with Singular Value Decomposition Electrical Inversion Scheme. The runtime of the battery pack modeled with the cellular approach combined with the SVD method is more than 90 h. However, the runtime drops to 0.75 h when the PARDISO technique is applied. The method developed within this study can be used for rapid and accurate development of batteries. The verification can be completed in virtual environment and a vital reduction in engineering/prototype/test costs can be guaranteed. The innovation the developed methodology propose is ensuring a fast and reliable performance assessment via taking the holistic effect of integrated models into consideration. Hence it is possible for original equipment manufacturer to completely or gradually eliminate the actual tests and hence prototype costs, test system, and engineer allocations.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3