Enhancing air compressors multi fault classification using new criteria for Harris Hawks optimization algorithm in tandem with MODWPT and LSSVM classifier

Author:

Rahmoune Chemseddine1ORCID,Amine Sahraoui Mohammed2ORCID,Gougam Fawzi1ORCID,Zair Mohamed1,Meddour Ikhlas3

Affiliation:

1. Solid Mechanics and Systems Laboratory (LMSS), University M’hamed Bougara, Boumerdes, Algeria

2. Systems Engineering and Telecommunications Laboratory (LIST), University M’hamed Bougara Boumerdes, Boumerdes, Algeria

3. Mechanics and Structures Laboratory, University 8 Mai 1945 Guelma, Algeria

Abstract

The evolution of industrial systems toward Industry 4.0 presents the challenge of developing robust and accurate models. In this context, feature selection plays a pivotal role in refining machine learning models. This paper addresses the imperative of accurate fault diagnosis in industrial systems, focusing on air compressors. These systems, vital for efficient operations, demand early fault detection to prevent performance degradation. Conventional methods often encounter challenges due to the occurrence of similar failure patterns under comparable conditions. To address this limitation, our approach delves into a more complex scenario, where air compressors operate under diverse fault conditions. This study introduces novel feature selection criteria achieved through a fusion of the Maximal Overlap Discrete Wavelet Packet Transform (MODWPT), the Harris Hawks Optimization (HHO) algorithm, and the Least Squares Support Vector Machine (LSSVM) classifier. The synthesis of these components aims to bolster the multi-fault diagnosis accuracy and stability for each fault class. The evaluation focuses on key statistical metrics—minimum, maximum, mean, and standard deviation. Experimental outcomes underscore the method’s superiority over traditional feature selection techniques. The approach excels in accuracy and stability, particularly across various fault categories, affirming the efficacy and resilience of the new criteria. The symbiotic integration of MODWPT, HHO, and LSSVM within our framework highlights its potential to elevate classification performance in the realm of industrial fault diagnosis.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Intrusion Detection System using Machine Learning Techniques;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3