Affiliation:
1. Solid Mechanics and Systems Laboratory (LMSS), University M’hamed Bougara, Boumerdes, Algeria
2. Systems Engineering and Telecommunications Laboratory (LIST), University M’hamed Bougara Boumerdes, Boumerdes, Algeria
3. Mechanics and Structures Laboratory, University 8 Mai 1945 Guelma, Algeria
Abstract
The evolution of industrial systems toward Industry 4.0 presents the challenge of developing robust and accurate models. In this context, feature selection plays a pivotal role in refining machine learning models. This paper addresses the imperative of accurate fault diagnosis in industrial systems, focusing on air compressors. These systems, vital for efficient operations, demand early fault detection to prevent performance degradation. Conventional methods often encounter challenges due to the occurrence of similar failure patterns under comparable conditions. To address this limitation, our approach delves into a more complex scenario, where air compressors operate under diverse fault conditions. This study introduces novel feature selection criteria achieved through a fusion of the Maximal Overlap Discrete Wavelet Packet Transform (MODWPT), the Harris Hawks Optimization (HHO) algorithm, and the Least Squares Support Vector Machine (LSSVM) classifier. The synthesis of these components aims to bolster the multi-fault diagnosis accuracy and stability for each fault class. The evaluation focuses on key statistical metrics—minimum, maximum, mean, and standard deviation. Experimental outcomes underscore the method’s superiority over traditional feature selection techniques. The approach excels in accuracy and stability, particularly across various fault categories, affirming the efficacy and resilience of the new criteria. The symbiotic integration of MODWPT, HHO, and LSSVM within our framework highlights its potential to elevate classification performance in the realm of industrial fault diagnosis.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improved Intrusion Detection System using Machine Learning Techniques;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17