Lean combustion and emission performance of a gasoline direct injection engine with active pre-chamber

Author:

Zhang Li1,Huang Zhaoming23ORCID,Wang Tao2ORCID,Zhao Niu3,Cheng Haiyan4,Chen Weiguo5

Affiliation:

1. Department of Application and Engineering, Zhejiang Institute of Economics and Trade, Hangzhou, China

2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

3. School of Mechanical Engineering, Wanjiang University of Technology, Ma’anshan, China

4. School of Foreign Languages, Zhejiang University of Finance and Economics Dongfang College, Hangzhou, China

5. Engine Engineering Research Institute, Chery Automobile Co., Ltd., Wuhu, China

Abstract

Pre-chamber jet ignition technology can effectively improve flame propagation speed and in-cylinder combustion rate, so it is conducive to the improvement of thermal efficiency and fuel economy. While, studies on the key parameters of the influence of active pre-chamber on combustion and emissions are not systematic. The influence of the key parameters of injection control in active pre-chamber on combustion and emission is not clear at present. Thus, in this paper, an active pre-chamber jet ignition system was designed and used in a single cylinder GDI engine, and the effects of compression ratio and pre-chamber injection strategy on pre-chamber jet ignition were experimentally studied, as well as the comparison of pre-chamber jet ignition and conventional spark ignition. The results show that, at 2750 r/min, IMEP 11 bar operation point, lean burn can effectively reduce the fuel consumption and increase the thermal efficiency of gasoline engine. Adopting traditional spark plug system can extend the lean burn limit to excess air ratio of 1.5 with the gross indicated thermal efficiency (GITE) of 45% limited by unstable combustion, while resembling active pre-chamber system can achieve GITE of 46.5% with the excess air ratio of 2.0 with the help of much more stable combustion. And the NOx emission of active-pre-chamber system has been reduced by 78% compared by conventional spark plug system. Increasing the compression ratio to 14.8 can further reduce the indicated fuel consumption to 177 g/kWh, and increase the GITE to 48.5% and further reduce the NOx emission to lowest 0.53 g/kWh with the excess air ratio of 2.1. With the increase of pre-chamber injection pressure, the ignition stability increases, the combustion duration decrases, and thermal efficiency increases. With the increase of the pre-chamber injection duration, the ignition delay first decreases and then increases. When the injection duration increases to 800 μs, COV is greater than 3%. If the pre-chamber injection duration further increase, the COV increases, the combustion phasing retard, and the thermal efficiency decreases. With the increase of pre-chamber injection duration and pressure, the wetting wall fuel increases, which leads to the increase of PN emission.

Funder

“the Fundamental Research Funds for the Provincial Universities”, Zhejiang Institute of Economics and Trade

Key Projects of Natural Science Research in Colleges and Universities of Anhui Province mber

Open Fund Project of Ma’anshan Engineering Technology Research Center of Advanced Design for Automotive Stamping Dies

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3