Influence of drill-string lateral collision on wellbore stability of a horizontal well

Author:

Ma Tianshou1ORCID,Huang Jin1,Li Zhilin2,Shi Yufan3,Jia Lichun2,Zhong Chengxu4

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China

2. Drilling and Production Engineering Technology Research Institute, Chuanqing Drilling Engineering Co. Ltd., CNPC, Guanghan, Sichuan, China

3. School of Engineering, Southwest Petroleum University, Nanchong, Sichuan, China

4. Shale Gas Research Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu, Sichuan, China

Abstract

A finite element model of wellbore stability was proposed for a horizontal well, and drill-string friction and lateral collision in the process of rotary motion were taken into account. An unconfined compression test was used for model validation, the normalized yielded zone area (NYZA) was employed to analyze wellbore stability, and the influence of a lateral collision on wellbore stability was simulated. The results indicated that the stress-strain curve of numerical simulation consists with unconfined compression test, and the maximum relative error is <2.2%. The evolution of NYZA can be divided into three typical stages: stage I (static balance), stage II (dynamic growth), and stage III (dynamic balance). Both normal and shear stresses reach to the peak value in stage II, while they always fluctuate in a relatively small range in stage III, so that the wellbore stability mainly affected by the first collision of drill-string. Both lateral acceleration and friction effects have significant impact on wellbore stability. The initial collision position and the size of drilling tool have a certain influence on wellbore stability, while the revolving speed of drill-string almost has no impact. The present paper has guiding significance for wellbore collapse prevention and drilling parameter optimization.

Funder

Bureau of Science and Technology Nanchong City

Southwest Petroleum University

Department of Science and Technology of Sichuan Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3