Finite element study of displacement controlled fretting in cylinder contact with different axis crossing angles

Author:

Guo Tieneng12,Ji Ruguo12ORCID,Ma Yunfei13

Affiliation:

1. Institute of Advanced Manufacturing and Intelligent Technology, Beijing University of Technology, Beijing, China

2. Mechanical Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing, Beijing University of Technology, Beijing, China

3. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China

Abstract

There is inevitably an angular offset during contact of mechanical structures such as roller bearings or gears. Most of the previous contact models involve the contact between two parallel cylinders. This paper introduces the angle parameter into the model constitutive relation for the first time. A new cylindrical contact model is proposed to simulate the contact at different angles. In this paper, a cylinder contact model with different axis crossing angles is proposed. The load-displacement curves of the contact model during loading and unloading are provided via theoretical derivation of the normal and tangential contact processes of the contact model. On this basis, the hysteresis curve model of the contact model is established. Through finite element modeling and finite element analysis, the cylinder hysteresis curve models under different axis crossing angles are verified. Compared to other common models, the energy dissipation of the cylindrical model is higher. By introducing the angle parameters into the model constitutive, it provides ideas for solving the macro contact problems such as cylindrical gear contact and rolling bearing. At the same time, on the micro-contact problem, it provides a theoretical basis for the tangential contact process of the regular joint surface.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3