RSF-based model for predicting pump failure trends in tunnels

Author:

Wu Xin12ORCID,Chen Qianru12,Hu Min12,Gan Lining12,Teng Li3

Affiliation:

1. SHU-UTS SILC Business School, Shanghai University, Shanghai, China

2. Shanghai University and Shanghai Urban Construction (Group) Corporation Research Center for Building Industrialization, Shanghai, China

3. Shanghai Urban Construction City Operation (Group) Co., Ltd. Shanghai, China

Abstract

The water pump is a piece of crucial electromechanical equipment to ensure the safety of tunnels. Therefore, it’s essential to master the performance trend of pumps to prevent the occurrence of failure. In this paper, essential information and failure records of pumps in 15 operating tunnels for many years were collected. According to the data characteristics, a data-filling model based on XGBoost is developed to address the issue of the censored data. Considering that most pumps are still in operation, a failure prediction model based on Random Survival Forest (RSF) is designed by incorporating survival analysis principles. The proposed Pump Failure Trend Prediction Model (PFTPM) overcomes difficulties caused by the lack of previous data and the small number of old pumps. We identify two phases of failure: the first phase exhibits a bathtub-shaped failure rate curve, while the second phase is characterized by a lower failure risk. The importance of considering rainfall, pump operating time, and performance changes for effective maintenance planning is emphasized. Furthermore, we summarize the failure evolution law of various types of pumps to amend maintenance cycle in the existing specification. Overall, this paper integrates innovative big-data technologies into the traditional maintenance data of tunnel pumps.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3