Design method for a bidirectional ducted tidal turbine based on conventional turbomachinery methods

Author:

Tsuru Wakana1ORCID,Kinoue Yoichi1,Murakami Tengen1,Sakaguchi Masaki2,Shiomi Norimasa3,Takao Manabu4

Affiliation:

1. Institute of Ocean Energy, Saga University, Saga, Japan

2. Department of Science and Engineering, Saga University Graduate School, Saga, Japan

3. Faculty of Science and Engineering, Saga University, Saga, Japan

4. Department of Mechanical Engineering, National Institute of Technology, Matsue College, Matsue, Japan

Abstract

Renewable energy sources include solar, wind, hydro, geothermal and biomass. Furthermore, ocean energy is being rapidly harnessed worldwide. In this study, to establish a suitable design method for various bidirectional ducted tidal turbines, instead of using blade element momentum theory and CFD, which have been used previously, the method used for turbomachinery was used for designing the turbines. A bidirectional turbine optimises the equipment design and reduces manufacturing and maintenance costs. Using the turbine power as the design condition, the difference in the tangential velocity between the front and rear of the turbine was calculated using Euler’s equation, and the blade stagger angle was determined based on the potential flow theory. To incorporate the effect of duct geometry into this design method in the future, the effect on the internal flow of the duct was experimentally investigated using three ducts with different maximum cross-sectional areas. Performance tests showed that the duct geometry had a negligible effect on the flow rate through the turbine. Therefore, the larger the maximum diameter of the duct, the greater the flow rate into the outside of the duct. The pressure difference between front and rear of the turbine and the inflow energy into the duct were different due to the energy conversion as the flow turned outside of the duct. To improve the accuracy of the design method, the effect of flow at the duct inlet and the energy conversion should be incorporated, and a review of the estimation method for the axial velocity ratio and the selection method for the design representative value should be conducted.

Funder

The Turbomachinery Society of Japan

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3