Research on dynamic characteristic of compressor RIP under thermal oxygen aging and variable preload conditions

Author:

Chen Junjie12ORCID,Chen Changyao1,Gan Yufeng1,Liu Jia2,Gao Xiangdong1

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou, China

2. Bonderra Industries Co., Ltd, Zhongshan, China

Abstract

The dynamic characteristics of rubber isolation pad (abbreviated as RIP) after service under the high temperature thermal oxygen aging and the variable preloads have preload dependence and thermal oxygen aging dependence, which is a crucial problem for matching the vibration isolation system of air conditioner compressor to reveal the dynamic characteristic mechanism of the RIP with different preloads and thermal oxygen aging conditions. The Peck model is first introduced to characterize the thermal oxygen aging factor, the fractional derivative Kelvin-Voigt thermal oxygen aging-perturbation model (FDKVTPM) and the Coulomb frictional thermal oxygen aging-perturbation model (CFTPM) are established to describe the frequency dependence and the amplitude dependence, respectively. The thermal oxygen aging-dynamic characteristic model of the RIP is built by considering the influence of variable preloads, the model parameters under different preloads are further identified, the validity of the model was examined by the experimental data. The concepts of the stiffness transition point (STP) and the stiffness transition frequency (STF) are innovatively proposed to better describe softening effect of the RIP under variable preload and variable amplitude working conditions. The results show that the static stiffness of RIP increases by 20.7%, the dynamic stiffness increases by 9.3%, and the loss factor decreases by 35% after thermal oxygen aging under different preload conditions, which can lay a theoretical foundation for in-depth study of the stiffness matching and optimization of air conditioner compressor with the RIP.

Funder

Jiangxi Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3