Flexural behavior of two-layer reinforced concrete slab with hollow cores

Author:

Eisa Ahmed S.1,Aboul-Nour Louay A.1,El-Ghamry Asmaa1,Zeleňáková Martina2,Katunský Dušan2ORCID

Affiliation:

1. Department of Structural Engineering, Zagazig University, Zagazig, Egypt

2. Faculty of Civil Engineering, Technical University of Kosice, Kosice, Slovakia

Abstract

Flexural behavior of a concrete slab system with an optimal weight-to-strength ratio comprising layered and hollow-core slab structures was investigated using two-layered slabs with hollow cores (LS/HCS). Six slabs with dimensions of 180, 450, and 1600 mm were tested experimentally and numerically using ANSYS software. Each layered slab comprises a 90-mm-thick lightweight concrete bottom layer and a 90-mm-thick high-strength concrete top layer. Three parameters were studied: core diameter (58, 86, and 110 mm), reinforcement ratio (0.37%, 0.53%, 0.95%), and treatment type (bonding agent, nails). Treatment types were analyzed via push-out testing; both nails and agents connected the slabs with sufficient bond strength. A control slab with 86-mm core diameter, shear-span-to-effective-depth ratio of 4, reinforcement ratio of 0.53%, and agent material was used. Concrete, steel bars, and loading support plates were modeled using SOLID65, LINK180, and SOLID185 elements, respectively. Analytical results were validated experimentally. A parametric study analyzed other parameters affecting LS/HCS behavior, including compressive strength, opening numbers, core shape, applied loading type, added top steel reinforcement, slab type, and slab height. Core diameter reduction, increased reinforcement ratios, and using nails enhanced the failure load. The LS/HCS gives an optimum weight-to-strength ratio with a 33.672% reduction compared with solid slabs.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3