State prediction of MR system by VMD-GRNN based on fractal dimension

Author:

Yi-ze Chen1,Qing-tang Chen2ORCID

Affiliation:

1. School of management, Hefei University of Technology, Anhui, Hefei, China

2. College of Electromechanical and Information Engineering, Putian University, Fujian, Putian, China

Abstract

Taking the test signals of magneto-rheological vibration system under different states as research objects, four Generalized Regression Neural Network (GRNN) prediction algorithms, based on time series, time series Auto-Regressive (AR) model coefficients, time series box dimensions, and Variational Modal Decomposition (VMD) box dimensions, are designed. Moreover, four Back Propagation Neural Network (BPNN)comparative prediction algorithms, based on the four previous parameters, are also designed. These eight algorithms are applied to predict vibration damping efficiency of the system. The prediction results show that, compared to the BPNN prediction algorithm, the corresponding four GRNN prediction algorithms have the advantages of strong self-learning ability, fast convergence speed, high prediction accuracy, and stable prediction results. Among the eight prediction algorithms, the GRNN prediction algorithm, based on VMD box dimension, forecasts the results with good stability, better self-learning ability, and higher computing speed, which can maximize the prediction accuracy of the system, the minimum prediction error can reach 1.9049% when the parameters K =  4, N = 33, and Spread = 0.601. To sum up, through parameter optimization, the optimal parameter combination scheme of GRNN prediction algorithm, based on VMD box dimension, is obtained, and the best prediction effect is achieved.

Funder

Guiding science project of Fujian province

Supporting funds of Guiding science project of Fujian province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3