Affiliation:
1. Yunnan Province Key Laboratory of Internal Combustion Engines, Kunming University of Science and Technology, Kunming, P.R. China
2. School of Intelligent Manufacturing, Panzhihua University, Panzhihua, P.R. China
Abstract
To solve the problem between temperature and thermal stress of a titanium alloy piston, a multi-objective optimization method combined response surface methodology and experiment design is performed to calculate an optimal design of the titanium alloy piston. Firstly, the thermo-mechanical coupling analysis, static and dynamic characteristics analysis are carried out. The analysis results show that the thermal load has a significant influence on the piston. Secondly, the five dimensional parameters are chose as the design variables through sensitivity analysis. The piston thermo-mechanical coupling stress, deformation, mass, and the first ring groove are selected as the objective functions. By using the optimal space-filling design method, the sample points between design variables and objective functions are gained. Then, the mathematical relationship between them is obtained by the response surface method. Finally, the multi-objective genetic algorithm is employed to optimize the mathematical model. After optimization, the maximum coupling deformation decreases by 3.05%, the maximum coupling stress decreases by 27.85%, the mass reduces by 5.46%. The maximum temperature of the first ring groove reduces by 12.54%. This study can provide a reference for the piston optimization design.
Funder
national natural science foundation of china
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献