Metaheuristics for optimizing unrelated parallel machines scheduling with unreliable resources to minimize makespan

Author:

Kaid Husam12ORCID,Al-Ahmari Abdulrahman12,Al-Shayea Adel1,Abouel Nasr Emad13,Kamrani Ali K4,Mahmoud Haitham A13

Affiliation:

1. Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia

2. Raytheon Chair for Systems Engineering (RCSE Chair), Advanced Manufacturing Institute, King Saud University, Riyadh, Saudi Arabia

3. Mechanical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt

4. Industrial Engineering Department, College of Engineering, University of Houston, Houston, TX, USA

Abstract

Parallel machines scheduling problems with continuous availability of machines are NP-hardness (non-deterministic polynomial-time hardness) and have become very popular for the last decade; there is still very limited literature on this problem. The purpose of this paper is to focus on the problem of scheduling n independent jobs to be processed on m unrelated identical parallel machines with availability constraints to minimize the maximum completion time of jobs (makespan). For this NP-hard problem, a mixed-integer linear programming (MILP) model is proposed to find an optimal solution for this problem. Two metaheuristics, tabu search (TS) and simulated annealing (SA) are proposed to solve large scale problem. Moreover, the performance of the solution obtained by the proposed metaheuristics is evaluated based on a lower bound, which decreases the time required to find the optimal solution. Extensive experiments are carried out to assess the performance of all proposed metaheuristics. The computational results highlight the ability of the proposed metaheuristics to obtain optimal solutions for most of the instances compared with the solutions of the proposed MILP model and lower bounds. Moreover, SA and TS can provide good efficiency for the problem in any jobs size and any machine size, but TS provides worse CPU time as the size of jobs become large.

Funder

national plan for science, technology and innovation

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3