The effects of Cu and Mg contents on the thermal stability of 6XXX-series aluminum alloy

Author:

Fan Shitong12ORCID,Chen Mingyang3,Jiang Keda23,Lan Yanquan2,Rong Guofu2

Affiliation:

1. College of Mechanical and Electrical Engineering, Central South University, Changsha, China

2. Taishan City Kam Kiu Aluminium Extrusion Co., Ltd., Taishan, China

3. School of Materials Science and Engineering, Central South University, Changsha, China

Abstract

The effects of Cu and Mg contents on the thermal stability of 6XXX-series aluminum alloys was investigated using tensile testing, scanning electron microscopy, electron backscattered diffraction and transmission electron microscopy. Results showed that the thermal stability of 6XXX-series aluminum alloys improved with increasing Cu and Mg contents, and that the precipitate was the most important factor for thermal stability. In the alloy without Cu, the strengthening precipitates are mainly β″ phases. After heat holding at 150°C for 1000 hours, part of the β″ phases transformed into β′ phases and the number density of the β″/β′ phases decreased, leading to a major strength reduction. In addition to β″ phases, Q′ and L phases are the main strengthening precipitates for the alloys containing Cu. Q′ and L phases have higher thermal stability than the β″ phase, and the number density of the Q′ phases decreased slightly after heat holding, while that of the L phases barely changed. This resulted in Cu-containing alloys with higher thermal stability than Cu-free alloys. The L phase number density increases with increasing Mg content. Compared with the Q′ phase, the L phase has higher thermal stability, resulting in higher thermal stability for alloys with higher Mg content.

Funder

2020 Jiangmen Innovation Practice postdoctoral research project

Kam Kiu Aluminium Products Group Limited, Key Project of Basic and Applied Basic Research in Jiangmen

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3