Multi-objective optimization design for anti-fatigue lightweight of dump truck carriage combined with machine learning

Author:

Lan Kejun1ORCID,Yu Wenyan2,Huang Chengjie2,Zhou Yongjian1,Li Zihang1,Huang Wei1

Affiliation:

1. School of Mechanical Engineering, Guangxi University, Nanning, China

2. Titan-Yuxiang Wheel (Guangxi) Co., Ltd, Liuzhou, China

Abstract

As urbanization continues to accelerate, dump trucks assume an increasingly important role in the transportation and construction of infrastructure. The carriage represents a critical structural assembly of dump trucks. One of the primary failure modes of the carriage is weld fatigue failure, which frequently gives rise to the problem of weld fatigue cracking during transportation. To increase the fatigue life of welds and enhance the degree of structural lightweight of a heavy dump truck carriage, a method for anti-fatigue lightweight design based on machine learning and multi-objective optimization is proposed. A high-fidelity finite element model of the carriage is established for static simulation analysis of the typical conditions. Based on the virtual reliability simulation test of the dump truck and the equivalent structural stress method, the fatigue life of the critical welds in the carriage is calculated. The important part thicknesses are selected as design variables through the comprehensive contribution analysis method. The maximum displacement and maximum stress under the dangerous condition are considered as constraints. The mass of the carriage and the minimum fatigue life of the critical welds are considered as optimization objectives. The GA-XGBoost machine learning approximation models (GA-XGBoost-MLAM) and NSGA-II algorithm are employed for multi-objective optimization design of the carriage. The entropy weighted TOPSIS method is utilized for multi-objective decision-making of Pareto solutions. The design after optimization and decision-making shows that, while satisfying the requirements of static structural performance, the minimum fatigue life mileage of the critical welds of the carriage is increased by 157,570 km, representing an increase of 36.58%. Additionally, the mass of the carriage is reduced by 295.69 kg, representing a decrease of 9.47%. Therefore, the proposed design method achieves a good effect in the anti-fatigue lightweight of dump truck carriage.

Funder

Guangxi Science and Technology Major Special Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3