Deep transfer learning architecture for suspension system fault diagnosis using spectrogram image and CNN

Author:

Arun Balaji Parameshwaran1,Naveen Venkatesh Sridharan1,Sugumaran Vaithiyanathan1,Mahamuni Vetri Selvi2ORCID

Affiliation:

1. School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai, Tamil Nadu, India

2. Department of Project Management, Mettu University, Metu, Ethiopia

Abstract

The suspension system plays a critical role in automobiles, ensuring the safety and comfort of vehicle occupants. However, extended usage, varying road conditions, external forces, and heavy loads can result in damage and faults within the internal components of the suspension system. To mitigate the occurrence of suspension system failures, the development of an effective fault diagnosis system for suspension components becomes imperative. Traditional fault diagnosis techniques often heavily rely on human expertise, which comes with certain limitations. In response, researchers have embraced intelligent fault diagnosis techniques, with transfer learning-based fault diagnosis emerging as a highly effective approach. By leveraging transfer learning, it becomes possible to extract and select fault-specific features for classification purposes. Deep learning-based methods, with their capacity to extract significant features and essential information from raw data, offer notable advantages. Despite these advantages, the implementation of deep learning-based fault diagnosis in suspension systems remains relatively unexplored and limited. In this article, a deep transfer learning architecture specifically designed for fault diagnosis in suspension systems is proposed. The approach involves employing 12 pre-trained networks and tuning them to identify the optimal model for fault diagnosis. Time domain vibration signals obtained from suspension systems under seven fault conditions and one good condition are transformed into spectrogram images. These images are then pre-processed and used as input for the pre-trained networks in fault classification. The results demonstrate that among the 12 pre-trained networks, AlexNet outperforms the others in terms of classification accuracy while requiring the least amount of training time. Therefore, AlexNet network in conjunction with the spectrogram images of time domain vibration signals for applications in suspension system fault diagnosis is highly recommend.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3