Multi-fault bearing diagnosis under time-varying conditions using Empirical Wavelet Transform, Gaussian mixture model, and Random Forest classifier

Author:

Imane Moussaoui1ORCID,Rahmoune Chemseddine1ORCID,Zair Moahmed1,Benazzouz Djamel1

Affiliation:

1. Solid Mechanics and Systems Laboratory (LMSS), University M’hamed Bougara, Boumerdes, Algeria

Abstract

Bearing faults can cause heavy disruptions in machinery operation, which is why their reliable diagnosis is crucial. While current research into bearing fault analysis focuses on analyzing vibration data under constant working conditions, it is important to consider the challenges that arise when machinery runs at variable speeds, which is usually the case. This article proposes a multistage classifier for diagnosing bearings under time-variable conditions. We validate our method using vibration signals from five bearing health states, including a combined fault case. Our approach involves decomposing the signals using Empirical Wavelet Transform and computing temporal and frequency domain attributes. We use the Expectation-Maximization Gaussian mixture model for optimization concerns to identify relevant parameters and train the Random Forest classifier with the selected features. Our method, evaluated using the Polygon Area Metric, has demonstrated high effectiveness in diagnosing bearings under time-variable conditions. Our approach offers a promising solution that efficiently addresses speed variability and combined fault recognition issues.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3