High order multi-resolution WENO scheme with AUSMV numerical flux for solving the two-phase flows

Author:

Mehmood Shahid1,Rehman Asad2ORCID,Zia Saqib1

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan

2. Department of Mathematics, University of Gujrat, Mandi Bahauddin Campus, Gujrat, Pakistan

Abstract

This article presents the development of a fifth-order multi-resolution finite volume weighted essentially non-oscillatory (WENO) scheme combined with the advection upstream splitting method based on flux vector splitting (AUSMV) numerical flux for analyzing two-phase flow in both horizontal and vertical pipelines. The drift flux flow model comprises of two separate mass conservation equations for each phase for liquid and gas and one momentum equation for mixture and submodels for thermodynamics and hydrodynamics. The two mass conservation equations describe the behavior of each phase in the flow. The mixture-momentum equation takes into account the frictional and gravitational forces acting on the mixture of both phases. The thermodynamic and hydrodynamic submodels provide additional information to fully describe the flow and close the drift flux model. In the presence of these source terms and submodels, it is a challenging task to develop a high order efficient and accurate numerical schemes. The proposed numerical technique captures the peaks of pressure wave, suppresses the erroneous oscillations at the transition zones and resolves the discontinuities more efficiently and accurately. The accuracy of proposed numerical technique is verified by solving the various test problems. Furthermore, the solution obtained by developed numerical technique are compared to those attained with the high-resolution improved CUP and simple finite volume WENO numerical schemes.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3