Influence of runner blade number on hydraulic performance and flow control in draft tube of Francis turbine

Author:

Lu Jiahao1,Su Chenhan1,Tao Ran12ORCID

Affiliation:

1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China

2. Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing, China

Abstract

As a widely used core component of hydropower generation, the stable and safe operation of the Francis turbine plays a very important role in engineering applications. Therefore, the effects of different rotor blade numbers on the hydraulic performance and flow control of the draft tube of the Francis turbine are of great research value. This paper focuses on the rotor blade number 13, 14, 15, 16, and 17 in the prohibited and stabilized operating zones, each of which is taken as a working condition point. (Condition αref - HM and Condition 2 αref - HM). Computational Fluid Dynamics (CFD) numerical simulations were performed and analyzed. In terms of hydraulic performance, the increase in the number of blades increases the efficiency and power of the turbine under Condition αref - HM by 2.26% and 0.0021 MW respectively. The efficiency and power of the turbine under Condition αref - HM is also elevated, with the efficiency reaching a maximum of 91.77% at blade number 15, and the power of the same turbine reaching a maximum of 0.182 MW at runner blade number 13. From the 3D flow analysis of the turbine, the increase in the number of blades does not significantly change the flow state of the turbine’s draft tube. By defining the turbulence energy E, the fast Fourier transform of the turbulence energy signals on the two monitoring surfaces of the draft tube is used to obtain its main frequency, and the amplitude and phase at the typical main frequency are visualized, through which we can analyze the vortex band motion state on the two monitoring surfaces of the draft tube, and speculate the change of pressure pulsation of the draft tube. Such an analysis method has a guiding significance for us to improve the performance and stability of the turbine, which can be achieved by increasing or decreasing the number of blades.

Funder

Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3