Advances in mechanical metamaterials for vibration isolation: A review

Author:

Al Rifaie Mohammed1ORCID,Abdulhadi Hasanain2,Mian Ahsan2ORCID

Affiliation:

1. Department of Construction and Projects, Northern Technical University, Mosul, Iraq

2. Dapartment of Mechanical and Materials Engineering, Wright State University, Dayton, OH, USA

Abstract

The adverse effect of mechanical vibration is inevitable and can be observed in machine components either on the long- or short-term of machine life-span based on the severity of oscillation. This in turn motivates researchers to find solutions to the vibration and its harmful influences through developing and creating isolation structures. The isolation is of high importance in reducing and controlling the high-amplitude vibration. Over the years, porous materials have been explored for vibration damping and isolation. Due to the closed feature and the non-uniformity in the structure, the porous materials fail to predict the vibration energy absorption and the associated oscillation behavior, as well as other the mechanical properties. However, the advent of additive manufacturing technology opens more avenues for developing structures with a unique combination of open, uniform, and periodically distributed unit cells. These structures are called metamaterials, which are very useful in the real-life applications since they exhibit good competence for attenuating the oscillation waves and controlling the vibration behavior, along with offering good mechanical properties. This study provides a review of the fundamentals of vibration with an emphasis on the isolation structures, like the porous materials (PM) and mechanical metamaterials, specifically periodic cellular structures (PCS) or lattice cellular structure (LCS). An overview, modeling, mechanical properties, and vibration methods of each material are discussed. In this regard, thorough explanation for damping enhancement using metamaterials is provided. Besides, the paper presents separate sections to shed the light on single and 3D bandgap structures. This study also highlights the advantage of metamaterials over the porous ones, thereby showing the future of using the metamaterials as isolators. In addition, theoretical works and other aspects of metamaterials are illustrated. To this end, remarks are explained and farther studies are proposed for researchers as future investigations in the vibration field to cover the weaknesses and gaps left in the literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3