Model development synchronized with data mining for rolling stock maintenance strategy

Author:

Prabhakaran Priyanka1ORCID,Anandakumar Subbaiyan1,Priyanka Bhaskaran E2,Velusamy Prabu3

Affiliation:

1. Department of Civil Engineering, Kongu Engineering College, Erode, Tamilnadu, India

2. Department of Mechatronics Engineering, Kongu Engineering College, Erode, Tamilnadu, India

3. Department of Construction Technology and Management, Wollega University, Nekemte, Ethiopia

Abstract

Indian metro system is comprised of many functional units for enabling smooth run of trains namely tracks, rolling stock, signaling and communication, operations and control center, projects, and design. Among those functional units, Rolling Stock (RS) is an integral part of any rapid transit system and also the most critical space if proper maintenance measures are neglected. The rolling stock department comprises interdisciplinary teams working together to ensure efficient delivery of trains on a service run. The trainsets of Metro Rail Networks are often subjected to both periodic and corrective maintenance based on service requirements. The maintenance schedule of the trainsets is monitored through a wireless communication mode. The train operator is responsible for alerting the nodal person regarding subsequent correspondence in the event of any emergency maintenance necessity. Therefore, this paper concentrates on the development of an IoT-based automatized maintenance prioritizing platform based on the incorrect operational sequence number that pops up in the operator’s cabin. A mathematical model is synchronized with the alert triggering signal from the field to categorize hierarchical decision-making on preventative and corrective maintenance. Simultaneously, a Genetic Algorithm is implemented to analyze the adopted combinations of maintenance say M1, M2, and M3 to identify the model that produced precise results. The test results reveal that the M3 model, which includes both corrective and preventative maintenance exhibits higher efficiency with a probability of 0.92%–0.98%. In addition, the combined maintenance prioritization system M3 offers the quickest analyzing time in the cloud computing platform (0.18 s) and the highest transaction performance on real-time datasets.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast High-Dimensional Parameter Optimization for Turbine Blade Manufacturing Using the Powerball L-BFGS Method Under Incomplete Measurements;IEEE Transactions on Instrumentation and Measurement;2024

2. Passive machine vision-based defect classification in tungsten inert gas welding on SS304 using AI-based gradient descent algorithm;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3