A damage-based method to predict crack initiation lifetime of high-strength steel under proportional bending-torsional loadings

Author:

Gao Ganggang1ORCID,Liu Jianhui2,Lu Xuebin1,Zhang Rong1

Affiliation:

1. School of Mechanical and Electronical Engineering, LanZhou College of Information Science and Technology, Lanzhou, China

2. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou, China

Abstract

The fatigue life of specimen consists of crack initiation and crack propagation life. As the fracture toughness of high strength steel is low, the specimen will fail soon once crack appears. Therefore, the crack initiation life of high strength steel is considered to be its whole life. Based on the evolution of material fatigue damage and the critical plane method commonly used in multiaxial fatigue strength theory, a crack initiation life prediction method for multiaxial specimens is proposed in this paper. Firstly, a uniaxial nonlinear fatigue damage evolution equation is proposed based on the principles of thermodynamics and continuous damage mechanics. Then, a theoretical calculation method for determining the critical plane under multiaxial load is proposed, and the specific calculation process is given. After the critical plane is determined, the multiaxial fatigue damage parameter is constructed from the normal strain amplitude and shear strain amplitude on the critical plane, and a multiaxial nonlinear fatigue damage evolution equation is proposed by replacing the uniaxial damage parameter using the multiaxial damage parameter. Finally, the crack initiation life of fatigue specimens is predicted by using the proposed multiaxial nonlinear fatigue damage evolution equation, and the multiaxial fatigue tests of Q690D steel under different bending-torsion ratios and different amplitudes are validated. The comparison results show that the prediction error of the proposed method is within the two-fold dispersion band and better than that of Manson-Coffin method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Lanzhou Talents Innovation and entrepreneurship Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3