Dynamic analysis of composite flywheel energy storage rotor

Author:

Wang Yajun1,He Mingming2,Zhang Rui1,Zhang Haosui2,Liu Yibing2ORCID

Affiliation:

1. Shenzhen Energy Nanjing Holding Co., Ltd, Nanjing, China

2. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, China

Abstract

Dynamic analysis is a key problem of flywheel energy storage system (FESS). In this paper, a one-dimensional finite element model of anisotropic composite flywheel energy storage rotor is established for the composite FESS, and the dynamic characteristics such as natural frequency and critical speed are calculated. Through the analysis of acceleration transient response, it is found that the flywheel rotor have two critical speeds during acceleration or deceleration process, which are prone to resonance and damage the bearing. Therefore, in order to avoid resonance or reduce resonance peak, the influence of bearing support stiffness, damping and speed-up rate on the critical speed and resonance peak is studied. The calculation results show that the first two order critical speed are affected by the support stiffness. When the stiffness increases, the critical speed of the flywheel rotor increases, but the growth rate decreases. When the damping increases, the critical speed is basically not affected, and the vibration amplitude decreases rapidly. In addition, the resonance peak value of transient response can be effectively reduced by increasing the speed-up rate.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3