Research on the influence of thermal expansion of steel shaft on dynamic characteristics of full ceramic bearing-rotor system

Author:

Guo Jiancheng12ORCID,Wu Yuhou12,Zhang Xiaochen13,Zhang Yu12,Wang He12,Bai Xu12ORCID,Lu He12

Affiliation:

1. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China

2. National-Local Joint Engineering Laboratory of NC Machining Equipment and Technology of High-Grade Stone, Shenyang, Liaoning, China

3. Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process of Shenyang Aerospace University, Shenyang, Liaoning, China

Abstract

Bearing as the core components of high-grade CNC machine tools, with the constant change of internal clearance of bearing wear increasingly aggravated, spindle rotation accuracy reduced. In this paper, the idea of control variable method is used to explore the dynamic change of bearing clearance from different speeds and different radial loads. Starting with the dynamic model of bearing vibration, the theoretical model of rolling bearing with five degrees of freedom is established in this paper. The interaction force between steel shaft and ceramic bearing inner ring is calculated by Runge-Kutta method with elastic wall thickness ring theory, and the reduction of radial clearance of bearing is obtained. Therefore, a dynamic model of ceramic bearing considering the extrusion force of ceramic bearing inner ring is proposed. At the same time, the vibration test of steel shaft-all-ceramic bearing is designed and carried out. The test results show that under the same load, the higher the rotating speed, the shorter the time for the bearing-rotor system to reach temperature stability, and the root mean square of ceramic bearing-rotor system is obviously reduced. At the same speed, the greater the load, the more obvious the root mean square increase of the bearing-rotor system.

Funder

Open Fund of Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process of Shenyang Aerospace University

Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Northeastern University

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3