Controlling the flow loss of a supersonic compressor rotor using the blade slotting method

Author:

Ye Xinlong1ORCID,Zhou Zhenggui1

Affiliation:

1. Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

The flow loss in the blade passage of a supersonic compressor rotor mainly comes from the boundary layers on the blade surface and end wall, the shock wave, the shock wave/boundary layer interaction, and tip leakage flow; the instability is mainly caused by the shock wave near the rotor blade tip exiting the blade passage. This paper adopts an internal slot in the blade, with the inlet of the slot located at the leading edge of the blade and the outlet located on the suction surface of the blade, by using the momentum of the incoming flow to form a high-velocity jet to control the flow loss and improve the stall margin of the supersonic rotor. The mechanism of reducing flow loss by a slotting jet was studied, and a genetic algorithm optimization platform was further used for the coupled optimization design of the slot and blade. The numerical calculation results showed that the slotting jet can effectively suppress the development of the boundary layer on the suction surface while reducing the intensity of the shock wave, thereby reducing the loss of the boundary layer and shock wave, significantly improving the peak efficiency of the rotor, and increasing the mass flow rate at the peak efficiency point. The slotting jet can cause the shock wave in the passage to move downstream, thereby improving the stall margin of the rotor. Due to the strong shock wave in the blade passage near the blade tip, the slot outlet should be near and upstream of the shock wave; the shock wave in the middle and root regions of the blade is weaker, and the slot outlet should be located downstream of the shock wave.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3