Energy absorption characteristics of stepped multi-cell columns subjected to transverse loading

Author:

Li Zhichao1ORCID,Hu Shunan1,Yang Yongbao2,Zhu Haimin1ORCID

Affiliation:

1. School of Automotive Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China

2. China National Heavy Duty Truck Group Company, Jinan, Shandong, China

Abstract

Automotive bumper beam is a vital component that shields passenger and vehicle from harm and damage generated by catastrophic collapse. Previous investigations on its bending behavior have largely concentrated on multi-cell tubes with the same length, whereas stepped multi-cell structures have received less attention. In this paper, a novel stepped multi-cell configuration is proposed to improve the energy absorption characteristics of thin-walled structures under transverse loading. The finite element method is employed to analyze the crushing behaviors of the stepped multi-cell tubes. The numerical results reveal that the stepped multi-cell structures (SM2 to SM5) can reduce the initial peak force by 23.44–45.91% while increasing the energy absorption capacity, crush load efficiency, and specific energy absorption by 5.87–29.51, 38.29–139.45, and 5.87–29.51%, respectively, when compared to a conventional square tube (M1). In addition, the effects of wall thickness, section width, load angle, punch radius, and punch shape on the bending behaviors and energy absorption characteristics are examined. The results indicate that these factors have a considerable influence on the deformation features of M1 and SM2, which leads to a significant reduction in their bending energy absorption characteristics. These variables have no influence on the deformation modes of SM3, SM4, and SM5, and they present local indentation deformation with a high energy absorption efficiency. Increasing the number of layers improves the comprehensive performance of stepped multi-cell tubes, with SM5 exhibiting the best energy absorption characteristics under transverse loading.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3