Optimal design of a pneumatic atomizer using response surface method to obtain more uniform coatings

Author:

Qiao Wentong1,Qian Lijuan12ORCID,Zhu Chenlin1,Liu Jingqi1

Affiliation:

1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China

2. Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, China Jiliang University, Hangzhou, China

Abstract

Uneven coatings with overspray often occur to the target plate when using a pneumatic atomizer. This issue is mainly due to the high-level pressure in the plate center, which results from unreasonable design of the structure and operating parameters in atomizer. In this paper, an optimal design for these parameters was established by response surface method (RSM) and computational fluid dynamics (CFD) to produce more uniform coatings. The velocity data measured by a hot-wire anemometry experimentally verified the numerical model. Then, annular air hole diameter, horn flare angle, annular air pressure, and shaping air pressure were selected as design variables while the central pressure was chosen as objective function. The RSM with the central composite design (CCD) was employed to construct the regression equation that expresses the relationship between the central pressure and design parameters. Finally, the optimum combination of the parameters was carried out for reducing the central pressure, and the interaction effects between the parameters were also analyzed. The optimization results show that the central pressure is decreased by 44.6% and the performance of droplet size distribution is significantly improved. The experiment confirmed the effectiveness of the optimized atomizer to obtain well-distributed coatings.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3