Experimental and numerical investigation of flow over spiral grooved cylinders

Author:

Zhang Jun1,Ma Chao1,Liu Jing2ORCID,Zhang Zhitong1,Zhang Zhaoming1

Affiliation:

1. Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Technology Centre for Offshore and Marine Singapore, Singapore, Singapore

Abstract

This study experimentally and numerically investigates the performance of a circular cylinder with a spiral grooved surface in terms of reducing wind drag. Its application in the overhead high-power conductor plays a vital role, especially in typhoon conditions. Wind tunnel tests have shown that at the critical Reynolds number (Re), the coefficients of wind drag decrease to a greater extent in a spiral grooved cylinder than in a smooth circular one. Moreover, a cylinder with a shallow groove and a small number of spirals could reduce the coefficient of drag in typhoon conditions. To gain an insight into the underlying fluid mechanism, a large-eddy simulation of turbulent flow from a critical to a super-critical Re has been carried out to approximate the flow separation and turbulent eddies over the spiral grooved cylinder. The results of the wind tunnel test have been used as a benchmark for the numerical results. The flow characteristics have been established about the near-wall flow separation and far wake flow, the pressure coefficient, the skin-friction coefficient, drag coefficient, and Q-criterion field.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3