Design optimization of a solenoid actuator using particle swarm optimization algorithm with multiple objectives

Author:

Abedinifar Masoud1ORCID,Ertugrul Seniz2,Tayyar Gokhan Tansel34

Affiliation:

1. Department of Mechatronics Engineering, Istanbul Technical University, Istanbul, Turkey

2. Department of Mechatronics Engineering, Izmir University of Economics, Izmir, Turkey

3. Department of Naval Architecture and Marine Engineering, Istanbul Technical University, Istanbul, Turkey

4. Gemtekno Mekatronik Ltd. Sti, Istanbul, Turkey

Abstract

Solenoid actuators are well-known components that convert electromagnetic energy into mechanical energy. For control purposes, it is requested to have a high magnetic force that stays almost constant in the working region of the actuator. To meet these requirements, it is necessary to have an optimal geometrical design of the actuator. In this study, the following steps are performed to optimize the geometry of the solenoid actuator. The Finite Element Analysis (FEA) is performed, and the results of the simulation is verified with the experimental data. The effect of all geometrical parameters on the characteristics of the magnetic force is investigated. The parameters that highly affect the magnetic force are chosen as design optimization parameters. Then, the Particle Swarm Optimization (PSO) algorithm is realized to find optimal parameters. The algorithm consists of two objective functions being combined into a single objective function. It includes a higher and more consistent magnetic force in the effective working region of the solenoid. Finally, the solenoid actuator with optimized parameters is manufactured, and the results are compared. They show that the optimized solenoid actuator satisfies one of the objective functions, and magnetic force stays almost constant in the working region of the solenoid actuator.

Funder

Scientific and Technological Research Council of Turkey

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3