Precision estimation of large space-borne parabolic antenna support structure

Author:

Chuanzhi Chen12ORCID,Fei Lin2ORCID,Pei Wu2,Youming Zang2

Affiliation:

1. Key Laboratory of the Deep Space Planet Surface Exploration Institute, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Jiangxi Province Key Laboratory of Numerical Control Technology and Application, Jiujiang University, Jiujiang, Jiangxi, China

Abstract

An accuracy analysis approach – mosaic equivalence approach which is based on the principle of approximate structure substitution, to a large complex spatial mechanism with three-dimensional (3D) paired bearings support joint (PBS-joint) clearance is presented to effectively estimate the support structure precision of large parabolic space-borne antenna. The analysis suggests when all the PBS-joints equipped with Metric 628/6 bearings in standard clearance, the surface precision of support structure can obtain relatively high accuracy with a 99.73% probability that root mean square (RMS) was kept in (0.3275, 0.7673) mm and peak-to-valley (PV) was kept in (0.8806, 1.8178) mm. The solution of deviation configuration under a large complex spatial mechanism using the proposed mosaic equivalence approach can be transformed into that under a mosaiced structure of its simple sub-mechanisms. As a result, the high-dimensional coupling between the deviation configuration decision variables can be effectively avoided. Besides, the constraint equations of large complex mechanisms with the PBS-joint 3D clearance can be simplified. This method lays a foundation for reducing the manufacturing cost and risk of large-diameter, high-precision satellite antennas. It has essential engineering value.

Funder

science and technology project of Jiangxi Provincial Education Department

Natural Science Foundation of Jiangxi Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3