Improving transmission loss performance of aluminum extrusion in railway vehicles using lightweight material

Author:

Noh Hee-Min1ORCID

Affiliation:

1. Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang, Korea

Abstract

This study developed a method for improving the transmission loss performance of aluminum extrusion by reinforcing the inner space of the extruded material with a lightweight material, such as acrylic plastic. First, the dynamic characteristics of the aluminum extrusion were analyzed, and the characteristics of noise transmission were evaluated through an acoustic mode analysis of the air layer for the inner space of the extruded material. Furthermore, to improve the transmission loss performance of the aluminum extrusion, methods were developed for increasing the vibration stiffness and altering the acoustic mode of the inner space. Additionally, a simulation analysis of the vibration mode and a response analysis based on the excitation of sound were performed to validate the proposed model; the effectiveness of the model for noise and vibration reduction was compared with that of the existing model. This analysis was conducted using models wherein the acrylic plastic was partially and totally inserted into the interior space of aluminum extrusion. The results indicated that the noise performance of the short reinforcement model with the partially inserted acrylic plastic was improved by 3 dB and that of the long reinforcement model with the totally inserted acrylic plastic was degraded by > 4 dB compared with the existing aluminum panel.

Funder

Korea Railroad Research Institute

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3