Suspension parameters for low-damped carbody oscillation of high-speed railway vehicle

Author:

Park Joonhyuk1ORCID

Affiliation:

1. High-Speed Railroad Research Department, Korea Railroad Research Institute, Uiwang-si, Gyeonggi-do, Korea

Abstract

This study presents an optimization method to design the suspension properties associated with low-damped carbody oscillations for high-speed railway vehicles. In this method, the least damping ratio for the low-frequency modes in the entire service speed range and the critical speed for a worn wheel are proposed for the design objectives. Based on the linearized vehicle model, a genetic algorithm is applied to determine the optimal suspension properties to maximize the least damping ratio while maintaining the critical speed above the desired speed. The optimization results show that the proposed method can enhance lateral ride comfort by eliminating the region where the least damping ratio of the carbody mode decreases excessively and securing a constant for the entire service speed range. The least damping ratio was improved from approximately 5.7% to 15.6% and the critical for the worn wheel increased from approximately 430 to 499 km/h. Parametric studies are conducted to investigate the influence of the tolerances of the suspension properties, and the results provide useful information regarding the manufacture of suspension elements and assembly of the bogie system. The validity of the optimized suspension properties is verified from the simulation results using railway vehicle dynamics software.

Funder

Korea Railroad Research Institute

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3