Study on axial compression property of thin walled tube filled with negative Poisson’s ratio lattice

Author:

Sun Xiaodong1,Huang Zhaoming23ORCID,Wang Tao3ORCID,Hu Yan4,Wang Li2,Zhao Niu2

Affiliation:

1. School of Intelligent Manufacturing, Huainan Union University, Huainan, China

2. School of Mechanical Engineering, Wanjiang University of Technology, Ma’anshan, China

3. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

4. Department of Mechanical and Automotive Engineering, Anhui Vocational & Technical College of Industry & Trade, Huainan, China

Abstract

In this paper, a new type of thin-walled energy absorbing structure filled with auxetic lattice structure has been proposed. The deformation mode and mechanical responses of the new filled tube under compression load have been studied through quasi-static compression experiment and numerical simulation. A theoretical model for predicting the average compression force has been established and verified with simulation analysis. The influences of the geometrical parameters in the compression performance of the filled tube have been studied. The results show that the failure mode of the filled tube under compression load is local buckling failure. Compared with the single thin-walled tube and the lattice structure, the filled tube has better compression resistance. Through parameter analysis, it is clear that the anti-compression property of the filled tube can be significantly improved by increasing the wall thickness of the cell rod and the angle of the lower support rod, which will provide an important reference for the anti-impact optimization design of the negative Poisson’s ratio lattice filled structure.

Funder

Quality engineering project of Anhui Province

Key project of natural science research in Colleges and Universities of Anhui Province

Key projects of the support plan for outstanding young talents in Colleges and Universities of Anhui Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3