Design of point-type heavy load connection and low impact separation mechanism based on energy flow analysis

Author:

Wang Gang1,Yao Yimeng1,Wang Jingtian1,Yang Fei2,Yue Honghao2ORCID,Zhang Yuliang3

Affiliation:

1. Hebei Province Micro-Nano Satellite Collaborative Innovation Center, North China Institute of Aerospace Engineering, Langfang, China

2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China

3. Beijing Satellite Manufacturing Plant LTD, Beijing, China

Abstract

In this paper, based on the development of the non-pyrotechnic low impact connection and separation device for heavy load connection of large space vehicles, the design method of connection and separation device is studied. The traditional heavy load connection separation device has a strong loading capacity, but the release of system energy will cause a huge impact during separation. This paper considers the transfer of impact energy in the mechanism design process, reduces separation impact based on energy flow analysis. Based on the analysis of the DOF (Degree of Freedom) constraint function of the separation system and the working requirements of the separation mechanism, the movability model of separation system was established. According to the research on DOF constraints and release, the key of force constraints in DOF constraints of the separation mechanism is obtained, and the separation mechanism that can implement the force constraints and release is analyzed. Furthermore, based on the energy flow analysis of the separation mechanism, the design method of the low impact separation mechanism is proposed, obtained a non-self-locking thread pair connection separation mechanism. The effectiveness of the design method was verified by the energy conversion analysis of the separation mechanism.

Funder

Postgraduate Innovation Funding Project of North China Institute of Aerospace Engineering

Central Guidance on Local Science and Technology Development Fund of Hebei Province

Natural Science Foundation of Hebei Province

S&T Program of Hebei

Hebei Province Graduate Innovation Funding Project

Langfang Municipal Science and Technology Program Self-financing Project

PhD research startup foundation of North China Institute of Aerospace Engineering

Scientific Research Project of Higher Education Institutions of Hebei Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3