On suitability of modified Weibull extension distribution in modeling product lifetimes and reliability

Author:

Alshenawy R.12,Feroze Navid3ORCID,Tahir Uroosa3,Al-alwan Ali1,Haj Ahmad Hanan4ORCID,Ali Rashid5ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia

2. Department of Applied Statistics and Insurance, Faculty of commerce, Mansoura University, Mansoura, Egypt

3. Department of Statistics, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan

4. Department of Basic Science, Preparatory Year Deanship, King Faisal University, Al-Ahsa, Saudi Arabia

5. School of Mathematics and Statistics, HNP LAMA, Central South University, Changsha, Hunan, P.R. China

Abstract

The Weibull distribution (WD) is an important lifetime model. Due to its prime importance in modeling life data, many researchers have proposed different modifications of WD. One of the most recent modifications of WD is Modified Weibull Extension distribution (MWEM). The MWEM has been shown better in modeling lifetime data as compared to WD. However it comparison with other modifications of WD, in modeling product lifetimes and reliability, is missing in the current literature. We have attempted to bridge up this gap. The Bayesian methods have been proposed for the analysis under non-informative (uniform) and informative (gamma) priors. Since the Bayes estimates for the model parameters were not available in closed form, the Lindley’s approximation (LA) has been used for numerical solutions. Based on detailed simulation study and real life analysis, it has been concluded that Bayesian methods performed better as compared to maximum likelihood estimates (MLE) in estimating the model parameters. The MWEM performed better than eighteen other modifications of WD in modeling real datasets regarding electric and mechanical components. The reliability and entropy estimation for the said datasets has also been discussed. The estimates for parameters of MWEM were quite consistent in nature. In case of small samples, the performance of Bayes estimates under ELF and informative prior was the best. However, in case of large samples, the choice of prior and loss function did not affect the efficiency of the results to a large extend.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3