Surface defect detection and classification of Si3N4 turbine blades based on convolutional neural network and YOLOv5

Author:

Liao Dahai12,Cui Zhihui12,Zhang Xin12,Li Jun13,Li Wenjie13,Zhu Zuoxiang13,Wu Nanxing12ORCID

Affiliation:

1. School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen, People’s Republic of China

2. Laboratory of Ceramic Material Processing Technology Engineering, Jingdezhen, People’s Republic of China

3. National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen, People’s Republic of China

Abstract

Due to the influence of mechanical vibration, high temperature creep and other factors, Si3N4 turbine blades are prone to surface defects. Besides, traditional algorithms are incapable to detect and classify surface defects simultaneously. Aiming at solving these problems, an algorithm for defect detection and classification of Si3N4 turbine blades based on convolutional neural network is proposed. The detection and classification network of this algorithm is optimized based on YOLOv5 network, the PAN structure and FPN structure of YOLOv5 are replaced by BiFPN structure. We establish the dataset of Si3N4 turbine blades, which is expanded by data enhancement. For the purpose of achieving a higher level of feature fusion, the PAN and FPN structures of the Neck part are replaced by BiFPN structure. As a result, the accuracy of detecting and classifying the surface defects by this algorithm is as high as 97.4%, and the detection speed is as low as 16ms. This optimized algorithm is able to solve the problems of traditional detection methods such as heavy workload, long time consuming and low accuracy. The algorithm provides a feasible approach for the quality detection of Si3N4 turbine blades and has certain engineering application value.

Funder

National Natural Science Foundation of China

Key Foundation of Jiangxi Province of China

Jiangxi Youth Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3